$$ \int\frac{dx}{x^{\frac{q}{p}}+1}=p\int \textbf{Q}\left[\frac{u^{p-1}}{u^q+1}\right]\left(x^{\frac{1}{p}}\right)dx-\frac{p}{q}\sum_{\omega^q+1=0}\omega^{p}\ln\left(x^{\frac{1}{p}}-\omega\right)+C $$
Quantami
I like strange mafs.
$$ \int\frac{dx}{x^{\frac{q}{p}}+1}=p\int \textbf{Q}\left[\frac{u^{p-1}}{u^q+1}\right]\left(x^{\frac{1}{p}}\right)dx-\frac{p}{q}\sum_{\omega^q+1=0}\omega^{p}\ln\left(x^{\frac{1}{p}}-\omega\right)+C $$