Re:從零開始的量子生活
Last updated on October 28, 2024
Contents
前言
欸好久沒看 re:zero 了,等等寫完來看
在高中時期,筆者曾經在只有一絲絲線代知識下自學過量子運算(Quantum Computing, QC),還順便想出了以下這量子態的製備演算法(Quantum State Preparation, QSP),量子核心部分複雜度粗估 $O(\log^2N)$。隨手算的,60% 會錯(?)
$$ \ket{\psi} = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1}\ket{k},\ N \in \mathbb{Z}^+ $$
但在沒有完備數學底子之下,那時候的能力已經達到瓶頸了,所以之後數年都沒有再認真碰過。直到大二上學完線代。
正文
原本預計大二下來看之前的上課影片的計畫被打亂後,終於可以在平靜的暑假來實現這項事情了。
量運基本上整個基底都是由線代 + 量物相輔而成的 幸好量運沒有太多量物(?)。所以扎扎實實學完線代再來挑戰量運,在理解速度上顯然是有很大差距。
筆記分享
在學 Dirac Notation、Quantum Mechanics postulates and measurements 這幾個章節時因為還沒入手平板,所以沒留下筆記痕跡。
一些心得
測量的數學定義比預期中還要難很多,種類也很多種,到現在可能還不太熟練
密度算子部分又遇到了機率老朋友,真的很難轉回來
在密度算子證明偶而會遇到黑魔法,雖然已經問過一遍了但還是沒很懂,開學後再去問問
Arbitrary unitary gate 的造價也太昂貴,$O(n^2 2^{2n})$ 是甚麼鬼,$O(n^2 2^{2n})$ 耶
Permutation chain 的概念是好咚咚,說不定之後會用到
Simon’s 意外地難,但相同概念也可以套到 Order finding 的第二種看法上,習慣啦
QFT 之後又出現一堆黑魔法了,還有一堆不知名的 theorem & lemma
Shor 比想像中還要簡單非常多,基本上要做的事都由 classical 做完了,只是用 quantum 來加速一下 order finding 的部分而已
筆者自己習慣用的 phase notation 簡寫竟然跟 wiki 上的一樣,再次證明筆者就是 wiki (X)。
後記
截至寫這篇文的現在,筆者還剩下大約兩個禮拜的課要看,基本上開學後一開始都可以先看看要不要看 paper 或是拿來讀其他科的咚咚了,大歡喜。
但有些東西感覺學太快所以還沒打好基礎,反正筆者學習習慣都是先碰然後放置消化,所以也沒啥大不了。
反正開學後班上有人要組團學,筆者的台大物理朋朋好像也要來學,到時候再去抱大腿uwu。
至於暑假旅行文…再看看嚕,太不習慣寫這種咚咚了,說不定拖到開學才會出來也說不定。
那就,先醬 owob。